Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spike-dip transformation of Setaria viridis.

Identifieur interne : 000273 ( Main/Exploration ); précédent : 000272; suivant : 000274

Spike-dip transformation of Setaria viridis.

Auteurs : Prasenjit Saha [États-Unis] ; Eduardo Blumwald [États-Unis]

Source :

RBID : pubmed:26932666

Descripteurs français

English descriptors

Abstract

Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant.

DOI: 10.1111/tpj.13148
PubMed: 26932666


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spike-dip transformation of Setaria viridis.</title>
<author>
<name sortKey="Saha, Prasenjit" sort="Saha, Prasenjit" uniqKey="Saha P" first="Prasenjit" last="Saha">Prasenjit Saha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blumwald, Eduardo" sort="Blumwald, Eduardo" uniqKey="Blumwald E" first="Eduardo" last="Blumwald">Eduardo Blumwald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26932666</idno>
<idno type="pmid">26932666</idno>
<idno type="doi">10.1111/tpj.13148</idno>
<idno type="wicri:Area/Main/Corpus">000299</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000299</idno>
<idno type="wicri:Area/Main/Curation">000299</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000299</idno>
<idno type="wicri:Area/Main/Exploration">000299</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spike-dip transformation of Setaria viridis.</title>
<author>
<name sortKey="Saha, Prasenjit" sort="Saha, Prasenjit" uniqKey="Saha P" first="Prasenjit" last="Saha">Prasenjit Saha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blumwald, Eduardo" sort="Blumwald, Eduardo" uniqKey="Blumwald E" first="Eduardo" last="Blumwald">Eduardo Blumwald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetophenones (MeSH)</term>
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Organosilicon Compounds (MeSH)</term>
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Seedlings (cytology)</term>
<term>Seedlings (genetics)</term>
<term>Seeds (cytology)</term>
<term>Seeds (genetics)</term>
<term>Setaria Plant (cytology)</term>
<term>Setaria Plant (genetics)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétophénones (MeSH)</term>
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Composés organiques du silicium (MeSH)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Graines (cytologie)</term>
<term>Graines (génétique)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Plant (cytologie)</term>
<term>Plant (génétique)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Setaria (plante) (cytologie)</term>
<term>Setaria (plante) (génétique)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Acetophenones</term>
<term>Organosilicon Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Graines</term>
<term>Plant</term>
<term>Setaria (plante)</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Leaves</term>
<term>Seedlings</term>
<term>Seeds</term>
<term>Setaria Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Plant Leaves</term>
<term>Promoter Regions, Genetic</term>
<term>Seedlings</term>
<term>Seeds</term>
<term>Setaria Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Feuilles de plante</term>
<term>Graines</term>
<term>Plant</term>
<term>Régions promotrices (génétique)</term>
<term>Setaria (plante)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Reporter</term>
<term>Plants, Genetically Modified</term>
<term>Reproducibility of Results</term>
<term>Transformation, Genetic</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétophénones</term>
<term>Composés organiques du silicium</term>
<term>Gènes rapporteurs</term>
<term>Reproductibilité des résultats</term>
<term>Transformation génétique</term>
<term>Transgènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26932666</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>12</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Spike-dip transformation of Setaria viridis.</ArticleTitle>
<Pagination>
<MedlinePgn>89-101</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.13148</ELocationID>
<Abstract>
<AbstractText>Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant.</AbstractText>
<CopyrightInformation>© 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saha</LastName>
<ForeName>Prasenjit</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blumwald</LastName>
<ForeName>Eduardo</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000098">Acetophenones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017646">Organosilicon Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C473569">silwet L-77</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>866P45Y84S</RegistryNumber>
<NameOfSubstance UI="C051667">acetosyringone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000098" MajorTopicYN="N">Acetophenones</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017646" MajorTopicYN="N">Organosilicon Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032983" MajorTopicYN="N">Setaria Plant</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Agrobacterium-mediated spike dip</Keyword>
<Keyword MajorTopicYN="N">Setaria viridis</Keyword>
<Keyword MajorTopicYN="N">in planta</Keyword>
<Keyword MajorTopicYN="N">monocots</Keyword>
<Keyword MajorTopicYN="N">technical advance</Keyword>
<Keyword MajorTopicYN="N">transient and stable transformation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26932666</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.13148</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Saha, Prasenjit" sort="Saha, Prasenjit" uniqKey="Saha P" first="Prasenjit" last="Saha">Prasenjit Saha</name>
</noRegion>
<name sortKey="Blumwald, Eduardo" sort="Blumwald, Eduardo" uniqKey="Blumwald E" first="Eduardo" last="Blumwald">Eduardo Blumwald</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000273 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000273 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26932666
   |texte=   Spike-dip transformation of Setaria viridis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26932666" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024